
Using Dependency Tracking to Provide Explanations for Policy Management

Lalana Kagal, Chris Hanson, and Daniel Weitzner
Decentralized Information Group

MIT Computer Science and Artificial Intelligence Lab
{lkagal, cph, djweitzner}@csail.mit.edu

Abstract

Explanations for decisions made by a policy framework
allow end users to understand how the results were ob-
tained, increase trust in the policy decision and enforcement
process, and enable policy administrators to ensure the cor-
rectness of the policy. In our framework, an explanation for
any statement including a policy decision is a representa-
tion of the list of reasons (known as dependencies) asso-
ciated with its derivation. Dependency tracking involves
maintaining the list of reasons (statements and rules) for
the derivation of a new statement. In this paper, we describe
our policy approach that (i) provides explanations for pol-
icy decisions, (ii) provides more efficient and expressive
reasoning through the use of nested sub-rules and goal di-
rection, and (iii) is grounded in Semantic Web technologies.
We discuss the characteristics of our approach and provide
a brief overview of the AIR policy language that implements
it. We also discuss how relevant explanation information is
identified and presented to end users and describe our pre-
liminary graphical user interface.

1 Introduction

An explanation is a reason that justifies certain results
or decisions. For policy frameworks, this justification be-
comes especially important because it provides insights into
the policy development and enforcement process. Policy
administrators use these justifications to confirm the cor-
rectness of the policy and to check that the result is as ex-
pected. Users, on the other hand, mainly utilize justifica-
tions to check that the policy enforcement process works as
it should and, in the case of failed queries, to figure out what
additional information is required to get the correct result.

Our policy approach tracks dependencies during the rea-
soning process in order to provide automated justification
support so that policy administrators are not required to han-
dle or manipulate these dependencies or justifications. We
use a production rule system [19] as a reasoner and a Truth

Maintenance System (TMS) [9] as the dependency-tracking
mechanism. Our reasoner has additional features for im-
proved reasoning efficiency such as goal direction, which
controls how much inferencing the reasoner does. The rea-
soner also supports the extraction of relevant portions of
explanations in order to prevent the user from being over-
whelmed by irrelevant data and rules. As justifications pro-
vided by the TMS are usually in the form of proof trees
that may not be useful for end users, we have developed a
user interface to interpret these results into a graphical user-
friendly layout.

The AIR policy language, based on this approach, is
aimed at meeting policy compliance requirements of open,
decentralized information infrastructures such as the World
Wide Web and large enterprise systems. The policy rea-
soner must be able to search over a knowledge base as open
as the Semantic Web, but must also be able to assert clo-
sure over some set of facts in order to reach a useful result.
These open environments point to the need for flexible de-
pendency tracking that gives users and administrators the
most complete possible view of the inference as well as ef-
ficient ways of reasoning.

The paper is structured as follows: we start by discussing
details of our dependency tracking approach in section 2
and then describe our motivating scenario in section 3. In
section 4, we discuss the AIR policy language and its con-
structs. The next two sections deal with how we generate
and display explanations. We compare our research with
other work in policy explanations in section 7 and conclude
the paper with a discussion of our results and our future
work in section 8.

2 Dependency Tracking

A deductive reasoning system derives conclusions from
previous deductions or premises by the application of de-
ductive rules. For any given conclusion, it is useful to know
the specific set of premises that it was derived from; this
set is called the set of dependencies for the conclusion. De-
pendency tracking is the process of maintaining dependency

sets for derived conclusions.
Some dependency-tracking mechanisms provide addi-

tional features. For example, a Truth Maintenance System
(TMS) keeps track of the logical structure of a derivation,
which is an effective explanation of the corresponding con-
clusion. Another useful feature, also provided by a TMS, is
the ability to assume and retract hypothetical premises.

There are several reasons why dependency tracking is
useful for policy systems:

• The dependency set for a result provides a natural fo-
cus when trying to solve policy compliance problems.

• It can provide a concise explanation for a result. This is
essential for confirming that a policy is correctly mod-
eled. It can also help identify situations where a policy
is having unanticipated or undesirable consequences.

We have chosen to use a TMS as the dependency-
tracking mechanism for our project. The TMS provides
considerable power in a very simple mechanism; its pri-
mary cost is the memory required to record the structure of
a derivation. Although the TMS technology was invented
in the 1970s, it is not well known outside the artificial intel-
ligence community, and consequently there are no uses of
this technology in policy systems of which we are aware.

Our reasoner is a kind of production-rule system in
which the condition of a rule is a pattern to be matched
against a set of believed statements. When the pattern
matches, the rule’s action is performed. Typically the ac-
tion asserts new beliefs, causing them to be added to the set
of believed statements.

When something is added to the belief set, it is associ-
ated with a justification for its belief. In the case of a sim-
ple statement of fact, there is a trivial justification that the
statement is an assumption. A derived statement has a jus-
tification based on the inputs used to make the derivation.

In such a simple rule system, all of the dependency in-
formation is implied by the rules themselves. If a new belief
is asserted by a rule’s action, then its justification is the set
of statements that matched the rule’s pattern. More pre-
cisely, we believe the asserted statement if and only if we
believe every one of the matched statements. Additionally,
the justification records an identifier for the rule; this iden-
tifier together with the matched statements provide all the
relevant information about the particular deduction step just
performed. Typically these deduction steps build on one an-
other, resulting in a tree-like justification structure for any
given belief, in which the belief is the trunk of the tree and
the assumptions are the leaves. This tree structure is a com-
plete explanation of the support for the belief.

3 Motivating Scenario: Decentralized Access
Control

The DIG group has several online resources including
pictures, papers, presentations, and proposals that are only
accessible to members of the group and to people that mem-
bers trust. The group has a webpage that lists its members
using N3 [17], a representation of RDF (Resource Descrip-
tion Framework) [13]. An example of this group listing is
provided below.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix : <http://dig.csail.mit.edu/data#> .

:DIG a foaf:Organization;
 rdfs:label "DIG";
 foaf:homepage <./>;
 foaf:logo <i/logo.png>;
 foaf:member :MList;
 foaf:name "Decentralized Information Group" .

:MList a rdf:List;
 rdf:first <http://dig.csail.mit.edu/People/RRS>;
 rdf:rest
 (<http://www.w3.org/People/djweitzner/foaf#djw>
 <http://csail.mit.edu/~lkagal/foaf#me>
 <http://www.w3.org/People/Berners-Lee/card#i>
 <http://swiss.csail.mit.edu/users/cph/foaf.rdf#cph>
).

Figure 1. DIG member description in Turtle

The page identifies members by their Friend Of A Friend
(FOAF) [10] pages. FOAF is a vocabulary for describing
people, their email and physical addresses, projects they
are working on, people they know etc. Authentication in
this scenario is via OpenID [16]. OpenID is a decentral-
ized authentication mechanism that associates users with
URIs (Uniform Resource Identifiers) that they own and can
modify. If users can prove that they own the URI, they
are successfully authenticated. DIG members provide their
OpenID URI (usually the same as their work homepages) in
their FOAF pages.

When a user makes a request for a DIG resource, she
specifies her OpenID URI. The OpenID component on
the DIG web server authenticates the user and obtains this
OpenID URI. The policy reasoner then checks whether
the authenticated OpenID URI belongs to one of the mem-
bers of the group or to anyone who is known (specified via
foaf:knows on the member’s FOAF pages) to any DIG
member. The former is checked by extracting the FOAF
pages of members from the DIG page and seeing if any
of them state that their OpenID URI is the same as the re-
quester. The latter is checked by reading in the FOAF pages

of the members and then reading the FOAF pages of peo-
ple they know and checking if any of them have the same
OpenID URI as that of the requester. If the OpenID URI
matches, the user is given access and the resource is re-
turned. If not, the user is denied access. The reasoner is
able to provide a justification for why someone was given
or denied access to a certain document.

This entire example can be accessed at the following URI
http://dig.csail.mit.edu/2008/Papers/IEEE%20Policy/ex/

4 AIR Policy Language

AIR (Accountability In RDF) is a policy language that
exploits our dependency tracking approach. The poli-
cies are represented in Turtle [3], which is a human read-
able syntax for RDF, and include the quoting feature of
N3Logic [17]. AIR constructs allow policy writers to ex-
plicitly control how the reasoning happens by invoking rules
according to pattern matches and are based on AMORD
constructs [8]. AMORD is a production-rule system that
features pattern matching, dependency tracking, nesting of
rules, and goal direction. The combination of these fea-
tures provides expressive power (pattern matching and rule
nesting), efficient execution (goal direction), and integrated
explanations (dependency tracking).

AIR consists of an ontology and a reasoner, which when
given a set of policies and data in Turtle, attempts to com-
pute compliance of the data with respect to the policies.
Each computed compliance result has an associated expla-
nation in Turtle outlining the derivation of the result from
the inputs.

4.1 Language Overview

The AIR ontology comprises several classes and proper-
ties that are used to define rule-based policies. Please refer
to Figure 2 for an overview of the AIR classes, properties,
and their relationships.

There are two top-level classes in AIR: Abstract-
action and Abstract-container. Policy is a
subclass of Abstract-container. The Abstract-
container class has properties for defining variables, be-
lief rules, goal rules, belief assertions, and goal assertions
that Policy inherits. Variables are scoped to the container
they appear in.

The following is an example of a policy,
:DecAccessPolicy, which has 2 properties,
variable and rule. The policy has three vari-
ables, :REQ, :REQUESTER, :RESOURCE, and consists
of one rule, :DAP-1. The scope of the variables declared
in :DecAccessPolicy is within the policy and the
rules it contains. The scope of the variables declared in
:DAP-1 is :DAP-1 itself. If a variable is bound before

LEGEND

Abstract-
container
variable
rule
goal-rule
assertion
goal-assertion
assert
assert-goal

Abstract-
action

label
justification

Policy Abstract-rule
pattern
matched-graph
new-node
description

Goal-rule Belief-rule

Abstract-
assertion

statement

Belief Goal

Justification
rule-name
antecedent

Contradiction Collection
has-no-members
has-members
is-member-of
is-not-member-of
is-contained-in
is-not-contained-in
includes-member
restricted-to-
members-of

Graph

Pattern

rdfs:
Resource

is-identical-to
is-distinct-from
compliant-with
non-compliant-with

Class Name
Attributes
Attributes

Sub Class
Name

Attributes
Attributes

Hidden-rule

Figure 2. AIR ontology

a rule is invoked, then it is passed as a value and not as a
variable. (Variables do not have to be uppercase, it is just a
convention we use)

:DecAccessPolicy a air:Policy;
air:variable :REQ, :REQUESTER, :RESOURCE;
air:rule :DAP-1.

:DAP-1 a air:Belief-rule;
air:variable :MEMBERLIST, :MEMBER.

An Abstract-rule is a subclass of both
Abstract-container and Abstract-action
and its subclasses are Goal-rule and Belief-rule.
Instances of Goal-rule match statements that are
asserted as goals, and are used sparingly in typical appli-
cations. The rule property applies to all Abstract-
containers and is used to attach rules to policies as
shown in the example above.

A rule consists of a pattern, a matched-graph
variable, a justification, a label, and zero or more
actions. The atomic formulas in the RDF abstract syntax are
called triples and they are analogous to one 3-place holds(s,
p, o) predicate. A pattern is a set of triples containing vari-
ables in any one of the 3 places and matches a set of triples
in an RDF graph. The matched-graph variable is bound
to that set of triples at run-time. The matched-graph vari-
able, justification, and label are optional. (More information
about matched-graph and justification proper-
ties is provided in Section 5.2.) If justification is
omitted means the default justification is used.

For example, the following belief rule :DAP-2 has
two variables, a label titled “Decentralized Access Control

Rule2”, a pattern, and an assertion. The pattern consists of
4 triples, where the last two triples have the same subject
:MEMBER. The assertion is a single triple stating that the
request is compliant with the the policy.

:DAP-2 a air:BeliefRule;
air:label "Decentralized Access Control Rule2";
air:variable :MEMBERLIST, :MEMBER;
air:pattern {

:DIG foaf:member :MEMBERLIST.
:MEMBER air:in :MEMBERLIST.
:MEMBER a foaf:Person;

foaf:openid :REQUESTER.
};
air:assert { :REQ air:compliant-with :DIGPolicy }.

Belief rules implement forward-chaining deduction,
while goal rules provide a means to limit the application
of rules (and consequently the amount of computation per-
formed). In the following example, a belief rule :RuleA
has a nested goal rule r1 that controls the introduction of
sub-class type inference. The outer rule fires whenever a
sub-class relationship is believed, causing r1 to be enabled.
R1 is applied when there is a goal to show that some re-
source is a member of the class :V2, enabling the belief
rule r2. R2 implements the implication ”if a resource is a
member of a subclass :V3, it is also a member of the con-
taining class :V2”.

:RuleA a air:Belief-rule;
air:variable :V1, :V2, :V3, :V4;
air:label "sub-class implication";
air:pattern {

:V3 rdfs:subClassOf :V2.
};
air:goal-rule [# sub-rule r1

air:pattern { :V1 a :V2. };
air:rule [# sub-rule r2

air:pattern { :V1 a :V3. };
air:assert { :V1 a :V2. };

];
].

The purpose of the goal rule r1 is to limit the deduc-
tions made by the system and provide goal direction. On
the other hand, if :RuleA were rewritten as a belief rule,
as below, it would make all possible deductions of this kind,
whether they were needed or not. The use of a goal rule in-
stead limits the deductions to those actually asked for (spec-
ified as goals) rather than for every possible deduction.

:RuleA a air:Belief-rule;
air:variable :V1, :V2, :V3;
air:label "sub-class implication";
air:pattern {

:V3 rdfs:subClassOf :V2.
:V1 a :V3.

};
air:assert { :V1 a :V2. }.

The action of a rule consists of a set of assertions, sub-
rules, and alternatives. When the pattern of a rule matches,
its assertions get fired and its sub-rules became active. A
sub-rule appearing in the action of a containing rule is
initially inactive, meaning it is not eligible for matching.

When the containing rule’s pattern matches and its action is
performed, the sub-rule becomes active and its pattern will
be matched as needed.

In the following example, :sub-rule only becomes
active after the pattern of :containing-rule has been
matched and similarly :sub-sub-rule only becomes
active after the pattern of :sub-rule has been matched.

:SomePolicy a air:Policy;
air:rule [
air:label "containing-rule";
air:pattern { ... };
air:rule [
air:label "sub-rule";
air:pattern { ... };
air:assert { ... };
air:rule [
air:label "sub-sub-rule";
air:pattern { ... };
air:assert { ... }

]
]

] .

An alternative is a rule that becomes active if the pattern
of the containing rule fails. This alt property is used to
assert closure over some set of facts. Consider the follow-
ing example. If the pattern of :RuleB matches, then the
assertion fires, otherwise the alternative, :RuleC becomes
active.

:RuleB a air:Belief-rule;
air:variable :MEMBER;
air:pattern {
:MEMBER air:in :MEMBERLIST.

};
air:assert { :MEMBER foaf:member :DIG };
air:alt [air:rule :RuleC].

:RuleC a air:Belief-rule;
...

An assertion appearing in the action of a rule consists of
a set of triples containing variables and literals. It is simi-
lar in appearance to a pattern. When the pattern of the
rule is matched, the assertion statement with bound variable
values is added to the set of beliefs.

In the following example, an assertion is associated with
:RuleD. When the rule’s pattern matches, the statement
is asserted as a belief. The variables :MEMBERLIST and
:DIG are bound before the rule is invoked.

:RuleD a air:Belief-rule;
air:variable :MEMBER;
air:pattern {
:MEMBER air:in :MEMBERLIST.

};
air:assert { :MEMBER foaf:member :DIG } .

After the pattern of the above rule
matches, assume that :MEMBER is bound to
http://people.apache.org/˜oshani/foaf.rdf and :DIG is
bound to http://dig.csail.mit.edu/data#DIG, then the triple
that is asserted is

<http://people.apache.org/˜oshani/foaf.rdf> foaf:member
<http://dig.csail.mit.edu/data#DIG>

AIR provides a small library that implements some sim-
ple RDFS [6] and OWL [2] deduction rules. For example,
if a relation R is declared to be transitive, and the belief set
contains xRy and yRz, the library can deduce xRz. The
library provides a number of generally useful deductions,
and will be augmented with new rules as the need arises.

The properties dealing with policy compliance are
compliant-with and non-compliant-with; they
specify that the subject is or is not compliant with
the object policy. For example, the following policy,
:DecAccessPolicy has a rule, :DAP-3, which when
matched, asserts that the request is compliant with the pol-
icy. If the pattern does not match, then the alternative rule,
:DAP-4 becomes active.

:DecAccessPolicy a air:Policy;
air:variable :REQ, :REQUESTER, :RESOURCE;
air:rule :DAP-1,:DAP-3.

:DAP-3 a air:BeliefRule;
air:variable :MEMBER, :FOAF-REQ;
air:pattern {

:MEMBER air:in :MEMBERLIST.
:MEMBER foaf:knows :FOAF-REQ.
:FOAF-REQ foaf:openid :REQUESTER.

};
air:assert { :REQ air:compliant-with :DIGPolicy };
air:alt [air:rule :DAP-4].

5 Explanation Generation

Our reasoner provides three ways in which to identify
and extract relevant information from justification trees gen-
erated by the TMS; (i) hidden rules, (ii) explicit justifica-
tions, and (iii) rule descriptions.

5.1 Hidden rules

One problem with the dependency-tracking mechanism
is that it can record too much information. It has no way
to distinguish between deductions that are interesting and
that should appear as part of an explanation, and those that
should be omitted. For example, suppose there is a rule
that says “Students have access to group resources” and the
statement “GradStudents is a subclass of students” is be-
lieved. Then while proving that a student has access to some
resource, there will be a rule to deduce the sub-class rela-
tionship, but it won’t be interesting for most end users.

Our system provides a simple means for policy authors
to elide uninteresting deduction steps from explanations.
When writing a rule that makes such a deduction step, the
author declares it as Hidden-rule, and any deduction
made by that rule will not appear in the resulting explana-
tion. This distinction is under the control of the policy au-
thor, so the consequent hiding can be tailored to the users in
the policy domain.

For example, if we wanted to hide the sub-class rule and
its justification from the overall justification trace gener-
ated, would simply declare it to be of type Hidden-rule

:Sub-Class-Implication a air:Hidden-rule.

5.2 Explicit Justifications

The TMS provides a tree-like justification structure for
every belief (asserted or inferred) in our policy reasoner. In
certain cases, such as goal direction, the correct dependency
structure is not always inferable from the rule. In other
cases, we might want to modify the dependency structure
to provide customized justifications. To handle such situa-
tions, we provide a means to write explicit justifications and
to override the default justification provided by the TMS.
This is done by using the assertion property associated
with rules. This property is composed of two components,
statement, which is the set of triples being asserted, and
justification, which is the explicit justification that
needs to be associated with the statement. The value of
the justification property has to be an instance of
the Justification class. The Justification class
consists of two properties rule-id and antecedent.
The rule-id can be set to the name of the rule that the
assertion is to be attributed to and the antecedent is a
list of matched graphs that would act as the premises. It is
possible to obtain the matched graphs of rules by using the
matched-graph property of Rules with a variable.

Consider the example below. A rule, :DAP-1, has a
nested rule, :DAP-2, inside it. The default justification for
the assertion of :DAP-2 would be both the rules and their
matched graphs.

:DAP-1 a air:BeliefRule;
air:variable :REQ, :REQUESTER, :RESOURCE, :MEMBER,

:MEMBERLIST;
air:pattern {

:REQ a air:Request;
foaf:openid :REQUESTER;
air:resource :RESOURCE.

:DIG data:owns :RESOURCE.
};
air:rule :DAP-2.

:DAP-2 a air:BeliefRule;
air:pattern {

:DIG foaf:member :MEMBERLIST.
:MEMBER list:in :MEMBERLIST.
:MEMBER a foaf:Person;

foaf:openid :REQUESTER.
};

air:assert{ :MEMBER permitted :RESOURCE }.

In order to change this justification structure and show
that a completely different rule, :SomeOtherRule is
used, the matched-graph, :G1, for the new rule is obtained.
This matched-graph is used as the antecedent and the
rule name, :SomeOtherRule, is used as the rule-id
in the assertion of :DAP-2. This overwrites the original

@prefix : <http://dig.csail.mit.edu/data#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix air: <http://dig.csail.mit.edu/TAMI/2007/amord/air#> .
@prefix tms: <http://dig.csail.mit.edu/TAMI/2007/amord/tms#> .
@prefix yosi: <http://dig.csail.mit.edu/People/yosi#> .

 :DAP_1 tms:justification tms:premise .

 :DAP_3 tms:description (
 :Req2
 " is a request made by a requester with openid, "
 <http://auth.mit.edu/syosi>
 ", for DIG resource "
 <http://dig.csail.mit.edu/proposals/nsf.tex/>);
 tms:justification [
 tms:antecedent-expr [
 a tms:And-justification;
 tms:sub-expr :DAP_1,
 {:DIG :owns
 <http://dig.csail.mit.edu/proposals/nsf.tex/> .
 :Req2 a air:Request;
 air:resource
 <http://dig.csail.mit.edu/proposals/nsf.tex/>
;
 foaf:openid <http://auth.mit.edu/syosi> .
 }];
 tms:rule-name :DAP_1] .

 :Req2 air:compliant-with :DIGPolicy .

 1

 {
 :Req2 air:compliant-with :DIGPolicy .
 }
 tms:description (
 "The requester with openid, " <http://auth.mit.edu/syosi>
 ", is known to a DIG member, "
 <http://dig.csail.mit.edu/People/RRS>);
 tms:justification [
 tms:antecedent-expr [
 a tms:And-justification;
 tms:sub-expr :DAP_3,
 {<http://dig.csail.mit.edu/People/RRS> air:in
 :MemberList;
 foaf:knows yosi:YES .
 yosi:YES foaf:openid <http://auth.mit.edu/syosi> .
 }];
 tms:rule-name :DAP_3] .

 {
 <http://dig.csail.mit.edu/People/RRS> air:in
:MemberList;
 foaf:knows yosi:YES .
 yosi:YES foaf:openid <http://auth.mit.edu/syosi> .
 :DIG :owns <http://dig.csail.mit.edu/proposals/nsf.tex/> .
 :Req2 a air:Request;
 air:resource <http://dig.csail.mit.edu/proposals/nsf.tex/>;
 foaf:openid <http://auth.mit.edu/syosi> .
 } tms:justification tms:premise .

 2

Figure 3. Proof tree generated by TMS

justification tree of assertion of “:MEMBER permitted :RE-
SOURCE”.

:SomeOtherRule a air:BeliefRule;
air:matched-graph :G1;
air:pattern { A X C };
air:assert { B A C}.

:DAP-2 a air:BeliefRule;
air:pattern {

:DIG foaf:member :MEMBERLIST.
:MEMBER list:in :MEMBERLIST.
:MEMBER a foaf:Person;

foaf:openid :REQUESTER.
};

air:assertion [
air:statement { :MEMBER permitted :RESOURCE };
air:justification [

air:rule-id :SomeOtherRule;
air:antecedent :G1

]
].

5.3 Rule Descriptions

The earlier mechanisms cause the default justification
tree to be modified and the justification to be customized.
Though knowing the rules and facts from which a con-
clusion is derived is useful, it does not describe what the
rule was attempting to do. In order to provide natural lan-
guage like explanations, we allow descriptions to be added
to rules. These descriptions are English sentences and can
contain variable values. The description is an optional
property of rules and is a list instance, where list items are
enclosed in brackets and separated by commas. Each list
item can either be a string enclosed in quotes or a variable.
During the reasoning process, each variable is replaced by
its current value and inserted into the description string.

Consider the rule below, :DAP-3. It has a description

containing four list items - two strings and two variables,
:REQUESTER and :MEMBER

:DAP-3 a air:BeliefRule;
air:variable :MEMBERLIST, :MEMBER, :FOAF-REQ;
air:pattern {

:MEMBER air:in :MEMBERLIST.
:MEMBER foaf:knows :FOAF-REQ.
:FOAF-REQ foaf:openid :REQUESTER.

};
air:description ("The requester, whose openid URI

is" :REQUESTER ", is known by a
DIG member, " :MEMBER);

air:assert { :REQ air:compliant-with :DIGPolicy }

If the :REQUESTER variable is bound to
http://auth.mit.edu/syosi and the :MEMBER variable is
bound to http://dig.sail.mit.edu/People/RRS, then the
description of the rule generated at run-time is

The requester, whose openid URI is http://auth.mit.edu/syosi,
is known by a DIG member, http://dig.sail.mit.edu/People/RRS

6 Justification User Interface

The AIR reasoner produces explanations in the form of
proof trees in Turtle. Please refer to Figure 3 for a justi-
fication generated by the reasoner for the DIG policy sce-
nario. The justification is for a request, :Req2, made by
Yosi, a friend of one of DIG members for a protected re-
source, http://dig.csail.mit.edu/proposal/nsf.tex. The rea-
soner finds that :Req2 is compliant with the DIG policy
because the requester is known to one of the DIG mem-
bers, http://dig.sail.mit.edu/People/RRS. The conclusion in
the proof is outlined by a box.

As these proof trees might be incomprehensible to end
users, we have developed a graphical justification user in-
terface in Tabulator [18], a Semantic Web browser. This

Figure 4. Justification UI

allows users to view the explanation provided by the rea-
soner in different ways: (i) in a simple rule language, N3,
and (ii) in a graphical layout that highlights the result of the
reasoning and allows the explanation to be explored. Please
refer to Figure 4 for the graphical view of the explanation
in Figure 3. The More Information button provides a way
for the user to step through the proof starting from the most
relevant information (in this case facts that Yosi is a friend
of RRS who is a member of the DIG group) and working
backwards to the top of the tree (a request was made for a
DIG resource). The top bar contains the description
of the rule that generated the assertion and the bar below
contains premises (matched-graph) of that rule. We are still
working on improving the user interface to make it more
intuitive to users.

7 Related Work

Policy Languages
In recent years there have been several efforts to develop
expressive policy languages using Semantic Web technolo-
gies for a variety of application domains including network
management, Web services, and privacy. These include lan-
guages such as KAoS [5] and Rei [14]. KAoS policies are
OWL descriptions of actions that are permitted (or not) or
obligated (or not). This limits the expressive power, but
allows the classification of policy statements, enabling con-
flicts to be discovered from the rules themselves. Another
advantage that KAoS has is that if policy descriptions stay
within OWL-Lite or OWL-DL, then the computation is de-
cidable and has well understood complexity results. On the
other hand, languages such as Rei and AIR allow for rules

to be defined over attributes of classes in the domain in-
cluding users, resources, and the context. Though they are
expressive, they lack well defined semantics.

AIR is more expressive than either KAoS or Rei. How-
ever, Rei includes tools for policy analysis and speech acts
for dynamic policy modification, both of which AIR lacks.
Conversely, AIR is focused on generating explanations for
policy decisions, which neither KAoS nor Rei are capable
of.
Explanation Generators & Languages
The explanation framework in [4] provides natural language
explanations for questions about policy decisions including
explanations for failed results. In their framework, the ex-
planation generation process is separate from the regular
query process and uses abductive reasoning, a method of
inferring which hypothesis best explains the facts, to obtain
a proof. Parts of their proof language in the proof are then
substituted with natural language structures. One problem
with this approach is that abductive reasoning is known to
produce logically invalid results that can be confirmed in-
ductively [11] and as the proof generation process is dif-
ferent from the query process, it could infer an explanation
that is different from that was inferred by the query process.
Another problem is that the explanation for failed policy re-
sults (e.g. why-not) ends up being the list of all rules that
the user did not match. This means that the user has to sort
through a lot of potentially irrelevant information and the
disclosure of these additional policy rules could also be a
privacy risk. In our approach, however, the proof gener-
ation happens along with the inference and is not a sepa-
rate process so our reasoner tracks the rules and statements
that were actually used to infer the statement (policy de-
cision). Also, by explicitly handling failed results or un-

matched cases using the alt construct, our reasoner is able
to provide explanations for failed (or incompliant) policy
decisions without revealing all possible unmatched rules.

Both WhyNot [7] and the Know system [1] focus ex-
plicitly on failed queries and try to suggest changes to the
knowledge base that will cause these queries to succeed.
Our justification approach is more general and allows fail-
ures to be captured in policies so explanations can be pro-
vided for both successful and failed policy decisions.

Our proofs could be easily converted to generic proof
representation formats such as PML for display and anal-
ysis. PML is a general proof language or ”proof interlin-
gua” that is used to describe proof steps generated by dif-
ferent kinds of reasoning engines. Once our proofs are con-
verted to PML a user could manipulate them in Inference
Web (IW), a framework for displaying and manipulating
proofs defined in Proof Markup Language (PML) [15]. IW
concentrates on displaying proofs whereas our approach is
mainly about generating these proofs.

8 Conclusion and Future Work

Having prototyped a number of different scenarios with
AIR, we believe that the language is expressive enough to
support policy compliance in a variety of environments. In
the future, we plan to address the engineering challenges of
scalable, efficient reasoning over large, distributed knowl-
edge bases. We also see a number of UI and HCI-related
research challenges to be met including a higher-level rep-
resentation of the language to make authoring easier and UI
designs to help with rules authoring and presentation of de-
pendency relationships. Finally, we will integrate policy
aware capabilities into Semantic Web data browsers.

9 Acknowledgements

This work was sponsored by NSF Cybertrust Award
#0524481 and DTO NICECAP Award #FA8750-07-2-
0031. We would like to thank our colleagues Hal Abel-
son, Tim Berners-Lee, Jim Hendler, Deborah McGuinness,
Oshani Seneviratne, Yosi Scharf, Gerry Sussman, and K.
Krasnow Waterman for their participation in this project and
their comments on the paper.

References

[1] A. Kapadia and G. Sampemane and R. H. Campbell. Know
why your access was denied: regulating feedback for usable
security. In 11th ACM conference on Computer and Com-
munications Security, pages 52–61, 2004.

[2] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L.
McGuinness, P. F. Patel-Schneider, and L. A. Stein. OWL

Web Ontology Language Reference, W3C Recommenda-
tion. http://www.w3.org/TR/owl-ref/, February 2004.

[3] D. Beckett. Turtle - Terse RDF Triple Language. http:
//www.dajobe.org/2004/01/turtle/.

[4] P. A. Bonatti, D. Olmedilla, and J. Peer. Advanced Policy
Explanations on the Web. In European Conference on Arti-
ficial Intelligence (ECAI), 2006.

[5] J. Bradshaw, A.Uszok, R. Jeffers, N. Suri, P. Hayes,
M. Burstein, A. Acquisti, B. Benyo, M. Breedy, M. Car-
valho, D. Diller, M. Johnson, S. Kulkarni, J. Lott, M. Sier-
huis, and R. V. Hoof. Representation and reasoning about
DAML-based policy and domain services in KAoS. In 2nd
International Joint Conference on Autonomous Agents and
Multi Agent Systems (AAMAS2003), 2003.

[6] D. Brickley and R. Guha. RDF Vocabulary Description
Language 1.0: RDF Schema. http://www.w3.org/TR/rdf-
schema/, February 2004.

[7] H. Chalupsky and T. Russ. Whynot: Debugging failed
queries in large knowledge bases. In Fourteenth Innovative
Applications of Artificial Intelligence Conference (IAAI-02),
pages 870–877, 2002.

[8] J. de Kleer, J. Doyle, J. Guy L. Steele, and G. J. Sussman.
AMORD Explicit Control of Reasoning. SIGPLAN Not.,
12(8):116–125, 1977.

[9] J. Doyle. A truth maintenance system. Artificial Intelli-
gence, 12(3):231–272, November 1979.

[10] Friend of A Friend (FOAF). http://xmlns.com/
foaf/0.1/.

[11] F. H.R. Abductive reasoning as a way of worldmaking.
Foundations of Science, 6:361–383(23), 2001.

[12] A. C. Kakas, R. Miller, and F. Toni. An Argumentation
Framework of Reasoning about Actions and Change. In
Logic Programming and Non-monotonic Reasoning, pages
78–91, 1999.

[13] G. Klyne and J. J. Carroll. Resource Description Framework
(RDF): Concepts and Abstract Syntax, W3C Recommen-
dation 10 February 2004. http://www.w3.org/TR/
rdf-concepts/, 2004.

[14] Lalana Kagal and Tim Finin and Anupam Joshi. A Pol-
icy Based Approach to Security for the Semantic Web. In
2nd International Semantic Web Conference (ISWC2003),
September 2003.

[15] D. L. Mcguinness and P. Pinheiro. Explaining Answers from
the Semantic Web: the Inference Web Approach. Web Se-
mantics: Science, Services and Agents on the World Wide
Web, 1(4):397–413, October 2004.

[16] Openid. http://openid.net/.
[17] Tim Berners-Lee and Dan Connolly and Lalana Kagal and

Jim Hendler and Yosi Schraf. N3Logic: A Logical Frame-
work for the World Wide Web. Journal of Theory and Prac-
tice of Logic Programming (TPLP), Special Issue on Logic
Programming and the Web, 2008.

[18] Tim Berners-Lee and Y. Chen and L. Chilton and D. Con-
nolly and R. Dhanaraj and J. Hollenbach and A. Lerer and
D. Sheets. Tabulator: Exploring and Analyzing linked data
on the Semantic Web. In SWUI06 Workshop at ISWC06,
2006.

[19] D. A. Waterman and F. Hayes-Roth. Pattern-Directed In-
ference Systems. Academic Press, Inc., Orlando, FL, USA,
1978.

